

EFFLUX: High-Performance Hardware Security Evaluation Boards

Introduction to EFFLUX – F2, Measurement setup and Interfaces

Arpan Jati Naina Gupta Anupam Chattopadhyay Somitra Sanadhya

PACE, NTU, SINGAPORE

23rd January 2025

Introduction

- Side channel power analysis:
 - Capturing power or EM traces during the execution of a cryptographic circuit and analyzing them.
 - Many ways to capture traces from a variety of circuits.
 - But using a board designed for trace capture like SASEBO-GII, SAKURA-X, CW305 etc. helps obtain reliable and repeatable results.
- While working with lightweight ciphers and analysis of small logic circuits, it is easily realized that:
 - The leakage is very close or below the **noise floor** and the signal is not easily discernable on the oscilloscope.
 - The analysis takes many large sets of traces,
 - The result are often **inconclusive**, especially for small circuits.
 - Trace **averaging** required to improve quality.

EFFLUX F2: Motivation...

Example of two subsequent GIFT-128 traces (8-bit, 30dB amplifier), SAKURA-X

- As can be seen from the figure above, the noise from the board affects the captured traces.
- This means: A large number of traces are required to instill confidence that a protected design is secure, in some cases, 10's of millions of traces are used.
- We faced these problems while working on such lightweight ciphers and started on designing and improving trace capture boards.

FPGA Board: Design Goals

1) Low EMI and Very Low Noise

- To improve measurement quality (both power and EM).
- We aim to improve the SNR significantly to make the experiments faster and more reliable.

2) Single FPGA design

- To simplify the design and reduce system noise and cost.
- Two FPGAs are better for many applications, but with careful hardware and software design, we can use a single FPGA in most applications, without much side-effects.

Block Diagram for Single FPGA Interface

EFFLUX-F2 Block Diagram

- All the devices like RAM, Flash, USB IF, Display interfaces and Ethernet PHY etc., are connected to the FPGA.
- A specifically designed power supply targeting low noise and EMI emissions is powering all the devices on the board.
- To keep noise at a minimum, there are no additional microcontroller or CPLD for housekeeping purposes.
- Further, all the devices other than the FPGA do not contain any additional processing units to avoid noise generation.
- All noisy peripherals can be power-gated to reduce noise in the captured power traces, this includes high frequency clock generators.

EFFLUX F2 - PCB

EFFLUX F2: FPGA BOARD

Power Delivery

First stage: Uses a dual switching regulator.

Second Stage: Linear low dropout regulators.

- Power filter: Wide-band high order filter with an *insertion loss* of more than 60dB for frequencies between 100 KHz and 100 MHz.
- LC EMI filter: 3rd order π type built using discrete components, before reaching a low EMI switching regulator.
- Low Noise Regulators
- Multiple stages if required.

FPGA VCORE Measurement and Fault Injection

Power Measurement

 The voltage drop through the 0.1Ω resistor is amplified by the selected amplifier and can be used as the leakage signal.

Fault Injection

- The power supply is designed to handle shorts to the ground for small duration.
- The MOSFET has a current rating of more than 20A and resistance close to 3mΩ.

High Side Power Measurement: Voltage drop across a resistor.

Fault Injection / Power Glitching: Short to ground using a fast MOSFET.

Low Noise Design

- In this work, we follow many design techniques targeted for low noise:
 - reducing high current loop areas
 - appropriately sized and placed capacitors
 - proper ground planes
 - protecting sensitive signals from noisy traces
- LDO (Low dropout) linear regulators
 - are known for their low noise, high PSRR (Power Supply Rejection Ratio) and good transient response.
 - We use these devices as **post regulators** (described above) after the initial switching mode power supplies.

- The switching regulators are also running with spread-spectrum enabled
 - this distributes the conducted and radiated EM over a wider frequency band.
- These steps allow us to significantly reduce ripple on the power rails.
- We also use resistors and components (references, OPAMPs and regulators) with low TCR (Temperature Coefficient of Resistance) of 10ppm/°C or better and high accuracy 0.1%
 - better signal drift characteristics.
- This helps in experiments that run over a long time and face changing DC levels caused by temperature effects.

Battery Powered System (board generated noise)

- Powered using two Li-Ion cells in series at a voltage of 8.2V.
- The setup is designed to show the inherent noise of the power supplies.
 - No noise introduced from external power sources.
- Band-limiting the signals to 1 MHz
- EFFLUX-F2 (shown in blue) has a much lower noise amplitude when compared to the SAKURA-X board.
- For SAKURA-X regulator switching at 800 kHz, is visible. EFFLUX-F2 has much reduced emissions.

EFFLUX-F2 vs. SAKURA-X. Battery Powered devices, 1 MHz bandwidth. The graph on top shows amplified voltage signal from the VCCINT rail while the bottom one shows the corresponding FFT (log-log scale).

USB Powered System (typical use case)

- Powered from USB (connected to PC) at a voltage of 5.1V.
- To show the input power noise filtering, no filter was used, and the signal was band limited by the amplifier's bandwidth which is around 10 MHz (Wideband setup).
- EFFLUX-F2 (shown in blue) has much lower noise when compared to the SAKURA-X.

EFFLUX-F2 vs. SAKURA-X. USB Powered devices, 10 MHz bandwidth. The graph on top shows amplified voltage signal from the VCCINT rail while the bottom one shows the corresponding FFT (log-log scale).

Statistical analysis of the measured noise

To obtain the board noise levels, we divide the measured voltages by the amplifier gain 76dB (6300X).

When directly comparing the two boards:

- USB powered, EFFLUX-F2 has 4.62X lower RMS noise than SAKURA-X.
- Battery powered, EFFLUX-F2 has
 5.14X lower RMS noise than SAKURA-X.
- low noise floor of our measurement setup allows us to demonstrate the accuracy of the results with high confidence.

Battery-powered	Parameter	Measured	l at amplifier c	output	Calculated at amplifier input			
	Farameter	NOISE FLOOR	SAKURA-X	EFFLUX-F2	NOISE FLOOR	SAKURA-X	EFFLUX-F2	
	MEAN	2.504 mV	10.907 mV	12.437 mV	396.838 nV	$1.729 \ \mu V$	1.971 μV	
	RMS	5.626 mV	149.032 mV	28.977 mV	891.819 nV	$23.622 \ \mu V$	$4.593 \ \mu V$	
	Vpp 6σ	33.759 mV	894.193 mV	173.862 mV	$5.351~\mu V$	141.733 μV	$27.558~\mu\mathrm{V}$	
	STDEV	5.039 mV	148.633 mV	26.172 mV	798.662 nV	23.559 μ V	4.148 μ V	
	VARIANCE	$25.389~\mu V$	22.092 mV	$684.992~\mu\mathrm{V}$	0.638 pV	$555.018~\mathrm{pV}$	17.209 pV	
	Parameter				Calculated at amplifier input			
	Parameter	Measured	l at amplifier c	output	Calculate	d at amplifier	input	
p	Parameter	Measured NOISE FLOOR	l at amplifier o SAKURA-X	EFFLUX-F2	Calculate NOISE FLOOR	d at amplifier SAKURA-X	input EFFLUX-F2	
vered	Parameter MEAN	Measured NOISE FLOOR 3.419 mV	at amplifier of SAKURA-X 32.492 mV	EFFLUX-F2 4.387 mV	Calculate NOISE FLOOR 541.936 nV	d at amplifier SAKURA-X 5.150 μV	input EFFLUX-F2 695.386 nV	
powered	Parameter MEAN RMS	Measured NOISE FLOOR 3.419 mV 20.584 mV	at amplifier of SAKURA-X 32.492 mV 176.850 mV	EFFLUX-F2 4.387 mV 38.207 mV	Calculate NOISE FLOOR 541.936 nV 3.263 μ V	d at amplifier SAKURA-X 5.150μ V 28.031μ V	input EFFLUX-F2 695.386 nV 6.056 μV	
SB-powered	Parameter MEAN RMS Vpp 6σ	Measured NOISE FLOOR 3.419 mV 20.584 mV 123.502 mV	at amplifier of SAKURA-X 32.492 mV 176.850 mV 1.061 V	butput EFFLUX-F2 4.387 mV 38.207 mV 229.241 mV	Calculate NOISE FLOOR 541.936 nV 3.263 μV 19.576 μV	d at amplifier SAKURA-X 5.150 μV 28.031 μV 168.188 μV	input EFFLUX-F2 695.386 nV 6.056 μV 36.335 μV	
USB-powered	Parameter MEAN RMS Vpp 6σ STDEV	Measured NOISE FLOOR 3.419 mV 20.584 mV 123.502 mV 20.298 mV	at amplifier of SAKURA-X 32.492 mV 176.850 mV 1.061 V 173.839 mV	EFFLUX-F2 4.387 mV 38.207 mV 229.241 mV 37.954 mV	Calculate NOISE FLOOR 541.936 nV 3.263 μV 19.576 μV 3.217 μV	d at amplifier SAKURA-X 5.150 μV 28.031 μV 168.188 μV 27.554 μV	input EFFLUX-F2 695.386 nV 6.056 μV 36.335 μV 6.016 μV	

Noise measurement statistics: battery-powered @ 1 MHz B/W, USB-powered @ 10 MHz B/W. The amplifier input is connected to the boards.

Signal-to-Noise Ratio (SNR): Comparison

Signal-to-Noise Ratio Comparison: The maximum SNR in the points of interest (last round of AES) for SAKURA-X is measured at sample point 2664 and is 2.020. Whereas, for EFFLUX-F2, the maximum SNR is measured at sample point 2609 and is 16.562.

The SNR of EFFLUX-F2 is 8.2X higher than SAKURA-X

Correlation Power Analysis (CPA) Unprotected GIFT

For key byte 0, almost 60K traces are required using SAKURA-X to distinguish it from other possible key values. Whereas, for EFFLUX-F2, 12K traces are enough, thereby achieving a reduction of almost 5X.

Similarly, for key bytes 1 and 2, 5X and 17X more traces are required respectively.

Test Vector Leakage Assessment (TVLA) Partially Protected GIFT-128 (Threshold Implementation)

- Partially-protected implementation -> removed the register layer between the decomposed S-boxes.
- For SAKURA-X the ±4.5 threshold crossed only at a few sample points (around sample point 250).
- Whereas, using EFFLUX-F2, it is **quite prominent** from multiple sample points that the design leaks.
- From the incremental TVLA values. For SAKURA-X, the threshold is crossed **only after 100,000 traces**.
- Whereas EFFLUX-F2 shows leakage even before 5000 traces have been analyzed, and the t-value is increasing steadily.
- Thus, significantly reducing the leakage analysis time for a partially protected design.

Trace Capture: Need for higher performance

- Many experiments require several million traces.
- The data transfer speed quickly becomes the bottleneck, requiring:
 - Local generation using seeds and PRNGs
 - Synchronization issues
- USB 2.0 speeds are not enough once the plaintext/input becomes large 10-100's of KB or more.
- An interface is simply designed to transfer some data from the memory space of one device to the other.
- DMA over PCIe is the fastest way to achieve that.
 - GPUs
 - Accelerators

PCIe can be used to bridges two memories. Fast DMA operations mean significantly high performance

EFFLUX US+ PCIE LITE

Board:

- Xilinx Artix/Kintex UltraScale+ XCAU10P/ XCAU15P/XCAU20P/XCKU3P/XCKU5P as targets.
- Powered from PCIE port or external USB.
- USB PD supported. Requests from controller 12V.

Control/Data Interface:

- USB FT2232 10-30MB/s
- PCIE GEN4 7.9 GB/s

EFFLUX US+ PCIE LITE: PCIE over USB 4

HWINFO)® 64 v8.	16-5600					-		×
Program	Report I	Monitoring	Help						
				0					
Summary S	ave ke	Sensors	Memory	About		-	-		 _
DESK	entral Pro	TAS ressor(s)				Feature	Description		1.1
	lotherboar	d				General Information			- 1
	lemory					Device Name:	Xilinx, Device ID: 9044		- 1
🖻 🖵 🖁 B	us					Original Device Name:	Xilinx, Device ID: 9044		- 1
P	PCI Bus #0					m Device Class:	RAM/Memory Controller		- 1
Intel Arrow Lake-S 8P+12E - Host Bridge/DRAM Controller					Controller	Revision ID:	0		- 1
Intel Meteor Lake/Arrow Lake-H IOE - PCI Express Root Port # Intel Arrow Lake-S/HX - Integrated Graphics				egrated Graphics	ess Root Port #	PCI Address (Bus:Device:Function) Nu	47:0:0		- 1
 Intel Arrow Lake-S/HX - Integrated Graphics Intel Arrow Lake-S/HX - Dynamic Platform & Thermal Fram 			ermal Framewor	- PCI Latency Timer:	0		- 1		
9	🛛 📱 Inte	Arrow Lake	-S/HX SOC-	S - PCI Express Roo	t Port #13 (PCI	Hardware ID:	PCI\VEN_10EE&DEV_9044&SUBSYS_000810EE&REV_00	í.	- 1
	Intel Meteor Lake/Arrow Lake-U/H - USB Type-C Subsystem PC Express x4 Bus #3				C Subsystem PC				- 1
						PCI Express			- 1
1	Intel Meteor Lake/Arrow Lake-U/H - USB Type-C Subsystem PC DCI Formation A Data #45			C Subsystem PC	🚥 Version:	4.0		- 1	
	<u> </u>	ASMedia	Device ID:	2463		Aaximum Link Width:	x4		- 1
		PCI E	xpress x1 E	lus #46		E Current Link Width:	x4		
		🖮 📕 ASMedia, Device ID: 2463				Maximum Link Speed:	16.0 GT/s		
	PCI Express x4 Bus #47			ss x4 Bus #47		== Current Link Speed:	16.0 GT/s		
	Xiinx, Device ID: 9044		Device/Port Type:	PCI Express Endpoint		- 1			
	Inte	Arrow Lake	-S/HX SOC-	5 - Gaussian & Neur	al-Network Acce	Slot Implemented:	No		- 1
	Intel Arrow Lake-S/HX - Crash-log and Telemetry Intel Arrow Lake-S/HX NPU - Neural Processing Unit (Movidius V)			y Unit (Movidius V	Semergency Power Reduction:	Not Supported		- 1	
8	- de Inte	Meteor La	ke-U/H - US	B xHCI Host Control	ler	Active State Power Management (ASP	None		- 1
	- Inte	Meteor La	ke/Arrow Lal	ke - Thunderbolt DM	A0 Controller	Active State Power Management (ASP	Disabled		
	Inte	Arrow Lake	-S/HX SOC-	S - Shared SRAM		E LOs Exit Latency:	>4 us		
	Inte	Arrow Lake	e-S/HX SOC	- Direct eSPI Contro	ler	== L1 Exit Latency:	>64 us		
B - e	PCT Bus	#128	-5/HX 50C-	5 - SPI (lidsh) Cohu	oller	Maximum Payload Size Supported:	1024 bytes		
. V	ideo Adap	ter				Maximum Payload Size:	128 bytes		
🖶 🐚 M	lonitor					Resizable BAR Support:	Not Supported		
@ _ D	rives					-			
🕀 🕥 A	udio					System Resources			
I N	Network					Minterrupt Line:	N/A		
D- and P	UILS					Internut Pin:	INTA#		
						Memory Base Address 0	0		
								10 C	

DESKTOP-II2BTAS -> Bus -> PCI Bus #0 -> Intel Meteor Lake/Arrow Lake-U/H - USB Type-C Subsystem PCIe Root Port #17 -> PCI Express x4 Bus #45 -> ASMedia, Device ID: 2463 -> PCI Express x1 Bus #

HWINFO tool showing connected speeds and properties.

EFFLUX US+ PCIE LITE connected to a Intel Core Ultra 7 265K processor via USB4 using a ASM2464PD based I/F board at full PCIE GEN4 (16GT/s). The Xilinx FPGA shows up as a **memory controller.**

...