
Efficient and Accurate Security 
Verification in Probing model

Feng Zhou1,2, Yiming Yang3, Hua Chen2, Limin Fan2, An Wang3

1 University of Chinese Academy of Sciences, 

2 TCA Laboratory, Institute of Software, Chinese Academy of Sciences, 

3 Beijing Institute of Technology

OPTIMIST 2025@Kuala Lumpur, Malaysia



Motivation

✓ Existing formal verification tools that verify various security notions 
• maskVerif: Fast but not accurate

• IronMask: Fast but not accurate, only limited to standard gadgets.

• SILVER: Accurate but slow

✓ Tools that are both efficient and accurate

• Probing security: Prover [TCHES 2025]

• NI, SNI, PINI: ProverNG (this talk’s focus) [ICICS 2025]

• They are both based on SILVER [AsiaCrypt 2020].

Problem

Goal

Various security notions has been proposed through the development of masking.



Background

Masked Circuits and Security Models

registers reg

Output shares out

And gate ∧

Probes

Input shares in

Xor gate ⊕

Random masks ref

0 12 3

𝑥0

𝑎0b1 + 𝑟 𝑎1𝑏0 + 𝑟

𝑥1 𝑥2 𝑥3

𝑐0
𝑐1

𝑎0𝑏0
7

4

𝑎0 𝑎1𝑏0 𝑏1

Secret variables：
𝑎 = 𝑎0 + 𝑎1, 𝑏 = 𝑏0 + 𝑏1

𝑎1𝑏0
6

𝑎0𝑏1
5

𝑎1𝑏1
8

11 13 14 12

9 10

15 16

1817

𝑥0 + 𝑥1 𝑥2 + 𝑥3

𝑔0 𝑎0, 𝑏0 = 𝑎0𝑏0 → 𝑥0
𝑔1 𝑎0, 𝑏1, 𝑟 = 𝑎0𝑏1 + 𝑟 → 𝑥1 𝑥0 + 𝑥1 = 𝑐0
𝑔2 𝑎1, 𝑏0, 𝑟 = 𝑎1𝑏0 + 𝑟 → 𝑥2 𝑥2 + 𝑥3 = 𝑐1
𝑔3 𝑎1, 𝑏1 = 𝑎1𝑏1 → 𝑥3

✓Masked Circuits

 A direct acyclic gragh (DAG)

 𝑁𝑜𝑑𝑒𝑠: Gates = {in, out, ref, reg, not, 

and, xor, or, nand, xnor, nor}

 𝐸𝑑𝑔𝑒𝑠 : Wires

 Each node corresponds to a function

𝑟



Background

Masked Circuits and Security Models

registers reg

Output shares out

And gate ∧

Probes

Input shares in

Xor gate ⊕

Random masks ref

0 12 3

𝑥0

𝑎0b1 + 𝑟 𝑎1𝑏0 + 𝑟

𝑥1 𝑥2 𝑥3

𝑐0
𝑐1

𝑎0𝑏0
7

4

𝑎0 𝑎1𝑏0 𝑏1

Secret variables：
𝑎 = 𝑎0 + 𝑎1, 𝑏 = 𝑏0 + 𝑏1

𝑎1𝑏0
6

𝑎0𝑏1
5

𝑎1𝑏1
8

11 13 14 12

9 10

15 16

1817

𝑥0 + 𝑥1 𝑥2 + 𝑥3

✓ Security Models

 Standard probing model

 A Probe placed at output wire of gate 15
 𝑂𝑑 = {𝑥0 + 𝑥1}

𝑟

 Glitch-extended probing model

 A Probe placed at output wire of gate 15
 𝑂𝑑 = {𝑥0, 𝑥1}

 Definition of 𝑑 probing security

 Any observation set given by d probes is 

statistically independent of secret inputs 

to the masked circuit.



Background

Composability and Statistical Independence

Verification for NI, SNI, and PINI: For each observation 𝑸, find a simulation set 𝑺 which simulates 
𝑸 under the set of input shares 𝑆ℎ(𝑋).

Security notions for composability: NI, SNI, PINI

If 𝑺 simulates 𝑸, 𝑸 ∪ 𝑺 is statistically independent of ഥ𝑺 where 𝑆ℎ 𝑿 = 𝑺 ⊎ ഥ𝑺. [KSM20]

d probing security is not composable!

𝑺 simulates 𝑸: The distribution of 𝑸 depends only on the shares in 𝑺 but not shares in ҧ𝑆 = 𝑆ℎ 𝑿 ∖ 𝑺.



Verification Process of SILVER

Obesevation set: 𝑞0 = 𝑎0𝑏0, 𝑞1 = 𝑎0𝑏1 + 𝑟1

Motivation

Input shares: 𝑎 = 𝑎0 + 𝑎1, 𝑏 = 𝑏0 + 𝑏1

𝑸:

{𝑎0𝑏0, 𝑎0𝑏1 + 𝑟} 

Possible 𝑺:
∅
{𝑎0}
{𝑏0} 
{𝑏1} 
{𝑎0, 𝑏0} 
{𝑎0, 𝑏1} 

Corresponding ഥ𝑺:
{𝑎0, 𝑎1, 𝑏0, 𝑏1}
{𝑎1, 𝑏0, 𝑏1}
{𝑎0, 𝑎1, 𝑏1} 
{𝑎0, 𝑎1, 𝑏0} 
{𝑎1, 𝑏1} 
{𝑎1, 𝑏0} 

A subset of 𝑠𝑢𝑝𝑝 𝑄 ∩ 𝑆ℎ(𝑋)

𝑸 ∪ 𝑺:
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ ∅
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑎0}
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑏0} 
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑏1} 
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑎0, 𝑏0} 
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑎0, 𝑏1} 

ROBDD verification complexity: (2 𝑸∪𝑺 −1) × (2
ഥ𝑺 −1)

How to find 𝑺 efficiently?

Which combination of 𝑸 ∪ 𝑺 and ഥ𝑺 is 
statistically independent of each other?

Verifying 1-NI: whether the distribution of 𝑸 only 
depends on at most 1 share of both 𝑎 and 𝑏?

How to reduce the size of 𝑸 ∪ 𝑺 and ഥ𝑺?



Reduction Rules

Reduction rules

Which combination of 𝑸 ∪ 𝑺 and ഥ𝑺 is 
statistically independent of each other?

Complexity: (2 𝑸∪𝑺 −1) × (2
ഥ𝑺 −1)

How to reduce the size of 𝑸 ∪ 𝑺 and ഥ𝑺

1. If 𝑞 ∈ 𝑸 is protected by a perfect mask 
that is not used by 𝑸 ∖ {𝑞}, 𝑸 ∪ 𝑺 can 
be reduced to 𝑸 ∪ 𝑺 ∖ {𝑞}.

2. If 𝑠 ∉ 𝑠ℎ 𝑋 ∩ 𝑠𝑢𝑝𝑝(𝑸)，ഥ𝑺 can be 
reduced to ഥ𝑺 ∖ 𝑠 .

Corresponding ഥ𝑺:
{𝑎0, 𝑎1, 𝑏0, 𝑏1}
{𝑎1, 𝑏0, 𝑏1}
{𝑎0, 𝑎1, 𝑏1} 
{𝑎0, 𝑎1, 𝑏0} 
{𝑎1, 𝑏1} 
{𝑎1, 𝑏0} 

𝑸 ∪ 𝑺:
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ ∅
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑎0}
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑏0} 
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑏1} 
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑎0, 𝑏0} 
𝑎0𝑏0, 𝑎0𝑏1 + 𝑟 ∪ {𝑎0, 𝑏1} 



Domain Inference

Domain Inference

Assign each intermediate variable a domain!

We distinguish three types of domains
Share domain: I = {0,1,⋯ , 𝑑}
Random domain: R
Unknown domain: U

𝐷𝑜𝑚 𝑎2𝑏2 = 2 ∈ I𝐷𝑜𝑚(𝑎2𝑏1 + 𝑟1) = R 𝐷𝑜𝑚(𝑎0𝑏1) = U

𝑎2 ⋅ 𝑏1 + 𝑟1

𝑎2 ⋅ 𝑏2

𝑎2 ⋅ 𝑏0

Observations Simulation set

{𝑎2, 𝑏2}

∅

?

𝑎2

𝑎2𝑏2

𝑏2
2

2

2

𝑎2𝑏1 + 𝑟1 R
𝑎0

𝑎0𝑏1

𝑏1
10

𝑈

𝐷𝑜𝑚 𝑞 = 𝑖 ⇒ 𝑎𝑖 , 𝑏𝑖 ∈ 𝑺

𝐷𝑜𝑚 𝑞 = 𝑅 ⇒ 𝑺 = ∅

𝐷𝑜𝑚 𝑞 = 𝑈 ⇒ Enum 𝑺.

Guessing rules

Examples of domain inference rules



Domain Inference

Domain Inference

For a gate: 𝑛 = 𝑛. 𝑙𝑓𝑡 ∘ 𝑛. 𝑟𝑔𝑡

𝑝𝑒𝑟𝑓(𝑛) = ∅

𝐷 𝒏. 𝒍𝒇𝒕 𝐷 𝒏. 𝒓𝒈𝒕 𝐷 𝒏 Example

𝑖 ∈ I 𝑖 ∈ I 𝑖 ∈ I 𝑡0 = 𝑎0 ⋅ 𝑏0

𝑖 ∈ I 𝑗 ∈ I U 𝑡1 = 𝑎0 ⋅ 𝑏1

U R/I U Usually not the case

𝑖 ∈ I R I 𝑡2 = 𝑟0𝑎0

When 𝑝𝑒𝑟𝑓 𝑛 ≠ ∅，𝐷 𝑛 = 𝑅

𝑜𝑝 𝑛 ≠ 𝒓𝒆𝒈

𝐷 𝒏. 𝒍𝒇𝒕 𝐷 𝒏. 𝒓𝒈𝒕 𝐷 𝒏 Example

𝑖 ∈ I 𝑖 ∈ I 𝑖 ∈ I 𝑡0 = 𝑎0 ⋅ 𝑏0

𝑖 ∈ I 𝑗 ∈ I U 𝑡1 = 𝑎0 ⋅ 𝑏1

U R/I U 𝑡2 = 𝑎0𝑏1 + 𝑟

𝑖 ∈ I R I 𝑡3 = 𝑟0𝑎0

When 𝑝𝑒𝑟𝑓 𝑛 ≠ ∅, and 𝑜𝑝 𝑛 = 𝑟𝑒𝑔, 𝐷 𝑛 = 𝑅

Domain inference in Standard Probing Model Domain inference in Glitch-extended Probing Model



ProverNG – the tool

Work flow of ProverNG

DAG.nl 

Yosys

RTL source 
code

Nangate 45
Cell library

Parser
Netlist 

file
ProverNG/Prover

Annotation

Work flow of ProverNG



Evaluation

• Order: 1-3
• Hardware Private Circuits

• HPC1
• HPC2
• HPC3

• OPINI2

Benchmarks

Security notions

Non-Interference

Probe Isolating Non-Interference

Strong Non-Interference



Evaluation

• 𝑑-NI verification results

Comparison to SILVER, maskVerif, and IronMask



Evaluation

• 𝑑-SNI verification results

Comparison to SILVER, maskVerif, and IronMask



Evaluation

• 𝑑-PINI verification results

Comparison to SILVER, maskVerif, and IronMask



Discussion and Conclusion

• Complexity

➢ Exponential Explosion

✓ S-boxes, round-functions: too many variables when constructing 

ROBDDs

➢ Combinatorial Explosion

✓ Higher order masking: too many combinations to be verified

➢ …

Bottlenecks

• ProverNG, an efficient and sound tool to verify compositional security notions 

under probing model.

Conclusion



Thank you!
ProverNG: https://github.com/Lucien98/ProverNG



Background

Statistical Independence Check Based on ROBDDs

[KSM20]: Given two sets of Boolean random variables, 
𝒁 = {𝑍0, 𝑍1, ⋯ , 𝑍𝑛−1} and 𝒀 = {𝑌0, 𝑌1, ⋯ , 𝑌𝑚−1}, 𝒁 is 

statistically independent of 𝒀 iff the product over any 

non-empty subset of 𝒁 is statistically independent of 

the product over any non-empty subset of 𝒀.

Product over a set 𝐴: Π𝑥∈𝐴𝑥, the product of all elements in set 𝐴

𝑍0

𝑍1

𝑍0 ⋅ 𝑍1

𝑌0

𝑌1

𝑌0 ⋅ 𝑌1

𝑌2

𝑌0 ⋅ 𝑌2

𝑌1 ⋅ 𝑌2

𝑌0 ⋅ 𝑌1 ⋅ 𝑌2

Verification complexity: (2𝑛 − 1)(2𝑚 − 1)

Slow Performance Example: n = 2,𝑚 = 3

Subsets (𝒁)

{𝑍0}

{𝑍1}

{𝑍0, 𝑍1}

{𝑌0}

{𝑌1}

{𝑌0, 𝑌1}

{𝑌2}

{𝑌0, 𝑌2}

{𝑌1, 𝑌2}

{𝑌0, 𝑌1, 𝑌2}

Subsets (𝒀)



Domain Inference

Domain Inference

Input shares: 𝑎 = 𝑎0 + 𝑎1, 𝑏 = 𝑏0 + 𝑏1

We distinguish three types of domains
Share domain: I = {0,1,⋯ , 𝑑}
Random domain: R
Unknown domain: U

𝐷𝑜𝑚 𝑎0 = 0 ∈ I

𝐷𝑜𝑚(𝑟0) = R

𝐷𝑜𝑚(𝑎0𝑏1) = U

𝑎0

𝑎0𝑏0

𝑏0

𝑥0: = [𝑎0𝑏0]

𝑎0

𝑎0𝑏1

𝑏1 𝑟

𝑥1: = [𝑎0𝑏1 + 𝑟]

𝑎0𝑏1 + 𝑟

𝑐0: = 𝑥0 + 𝑥1

𝑎0

𝑎0𝑏0

𝑏0

𝑥0: = [𝑎0𝑏0]

𝑎0

𝑎0𝑏1

𝑏1 𝑟

𝑥1: = [𝑎0𝑏1 + 𝑟]

𝑎0𝑏1 + 𝑟

𝑐0: = 𝑥0 + 𝑥1

0 0

0

0

10 R

𝑈

R

R

R

0 0 10 R

0

0

R

𝑈

0

𝑈

[⋅]: register stages

Sim:{𝑎0, 𝑏0} Sim:∅ Sim: unknown

Guessing share domains for the variables in the correct simulation set 𝑺.


	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18

