

Efficient and Accurate Security Verification in Probing model

Feng Zhou^{1,2}, Yiming Yang³, Hua Chen², Limin Fan², An Wang³

¹ University of Chinese Academy of Sciences,
 ² TCA Laboratory, Institute of Software, Chinese Academy of Sciences,
 ³ Beijing Institute of Technology

Motivation

Problem

Various security notions has been proposed through the development of masking.

- ✓ Existing formal verification tools that verify various security notions
 - maskVerif: Fast but not accurate
 - IronMask: Fast but not accurate, only limited to standard gadgets.
 - SILVER: Accurate but slow

Goal

- **✓** Tools that are both efficient and accurate
 - Probing security: Prover [TCHES 2025]
 - NI, SNI, PINI: ProverNG (this talk's focus) [ICICS 2025]
 - They are both based on SILVER [AsiaCrypt 2020].

Masked Circuits and Security Models

✓ Masked Circuits

- A direct acyclic gragh (DAG)
 - Nodes: Gates = {in, out, ref, reg, not, and, xor, or, nand, xnor, nor}
 - □ *Edges* : Wires
 - Each node corresponds to a function

$$g_{0}(a_{0}, b_{0}) = a_{0}b_{0} \rightarrow x_{0}$$

$$g_{1}(a_{0}, b_{1}, r) = a_{0}b_{1} + r \rightarrow x_{1} \quad x_{0} + x_{1} = c_{0}$$

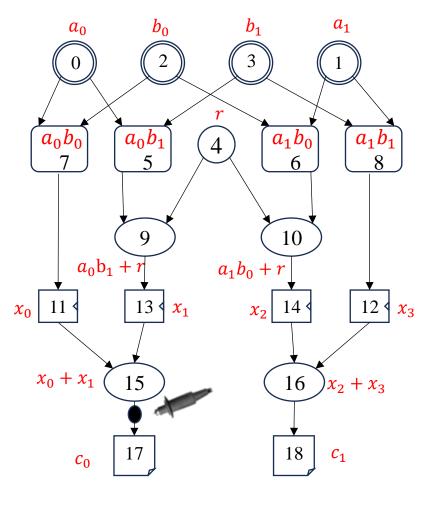
$$g_{2}(a_{1}, b_{0}, r) = a_{1}b_{0} + r \rightarrow x_{2} \quad x_{2} + x_{3} = c_{1}$$

$$g_{3}(a_{1}, b_{1}) = a_{1}b_{1} \rightarrow x_{3}$$

- Input shares in
- Random masks ref
- Xor gate ⊕
- And gate Λ
- registers reg
- Output shares out
 - Probes

Secret variables:

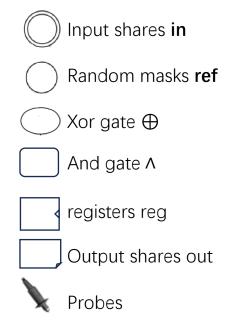
$$a = a_0 + a_1$$
, $b = b_0 + b_1$



Masked Circuits and Security Models

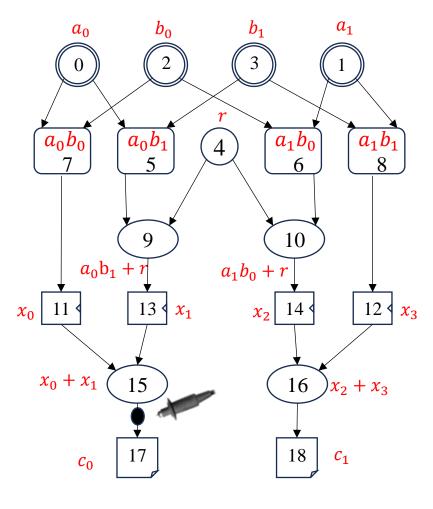
√ Security Models

- Standard probing model
 - □ A Probe placed at output wire of gate 15 □ $O_d = \{x_0 + x_1\}$
- Glitch-extended probing model
 - A Probe placed at output wire of gate 15 ■ $O_d = \{x_0, x_1\}$
- Definition of d probing security
 - Any observation set given by d probes is statistically independent of secret inputs to the masked circuit.



Secret variables:

$$a = a_0 + a_1$$
, $b = b_0 + b_1$



Composability and Statistical Independence

d probing security is not composable!

Security notions for composability: NI, SNI, PINI

Verification for NI, SNI, and PINI: For each observation Q, find a simulation set S which simulates Q under the set of input shares Sh(X).

S simulates **Q**: The distribution of **Q** depends only on the shares in **S** but not shares in $\bar{S} = Sh(X) \setminus S$.

If **S** simulates Q, $Q \cup S$ is statistically independent of \overline{S} where $Sh(X) = S \oplus \overline{S}$. [KSM20]

Verification Process of SILVER

Motivation

Verifying 1-NI: whether the distribution of \mathbf{Q} only depends on at most 1 share of both a and b?

Input shares: $a = a_0 + a_1$, $b = b_0 + b_1$

Obesevation set: $q_0 = a_0 b_0$, $q_1 = a_0 b_1 + r_1$

A subset of $supp(Q) \cap Sh(X)$

Which combination of $\mathbf{Q} \cup \mathbf{S}$ and $\overline{\mathbf{S}}$ is statistically independent of each other?

$$m{Q}$$
: Possible $m{S}$: $m{\emptyset}$ $\{a_0b_0,a_0b_1+r\}$ $\{a_0\}$ $\{b_0\}$ $\{b_1\}$ $\{a_0,b_0\}$ $\{a_0,b_1\}$

ROBDD verification complexity: $(2^{|Q \cup S|} - 1) \times (2^{|\overline{S}|} - 1)$

How to find \boldsymbol{S} efficiently?

How to reduce the size of $\mathbf{Q} \cup \mathbf{S}$ and $\overline{\mathbf{S}}$?

Reduction Rules

Reduction rules

How to reduce the size of $Q \cup S$ and \overline{S}

- 1. If $q \in \mathbf{Q}$ is protected by a perfect mask that is not used by $\mathbf{Q} \setminus \{q\}$, $\mathbf{Q} \cup \mathbf{S}$ can be reduced to $\mathbf{Q} \cup \mathbf{S} \setminus \{q\}$.
- 2. If $s \notin sh(X) \cap supp(\mathbf{Q})$, $\overline{\mathbf{S}}$ can be reduced to $\overline{\mathbf{S}} \setminus \{s\}$.

Which combination of $Q \cup S$ and \overline{S} is statistically independent of each other?

Complexity: $(2^{|Q \cup S|} - 1) \times (2^{|\overline{S}|} - 1)$

Domain Inference

Domain Inference

Assign each intermediate variable a domain!

We distinguish three types of domains

Share domain: $I = \{0,1,\dots,d\}$

Random domain: R Unknown domain: U Guessing rules

$$Dom(q) = i \Rightarrow a_i, b_i \in S$$

$$Dom(q) = R \Rightarrow S = \emptyset$$

$$Dom(q) = U \Rightarrow \text{Enum } S$$
.

Observations

$$a_2 \cdot b_2$$

$$a_2 \cdot b_1 + r_1$$

$$a_2 \cdot b_0$$

Simulation set

$$\{a_2, b_2\}$$

Ø

?

$$a_2b_1 + r_1 R$$

$$Dom(a_2b_1 + r_1) = R$$

$$a_{2}$$
 b_{2} a_{2} b_{3}

$$Dom(a_2b_2) = 2 \in I$$

$$a_0b_1U$$

$$a_0 b_1$$

$$0 1$$

$$Dom(a_0b_1) = U$$

Examples of domain inference rules

Domain Inference

Domain Inference

For a gate: $n = n.lft \circ n.rgt$

When $perf(n) \neq \emptyset$, D(n) = R

When $perf(n) \neq \emptyset$, and op(n) = reg, D(n) = R

$perf(n) = \emptyset$							
D(n.lft)	D(n.rgt)	Example					
$i \in I$	$i \in I$	$i \in I$	$t_0 = a_0 \cdot b_0$				
$i \in I$	$j \in I$	U	$t_1 = a_0 \cdot b_1$				
U	R/I	U	Usually not the case				
$i \in I$	R	I	$t_2 = r_0 a_0$				

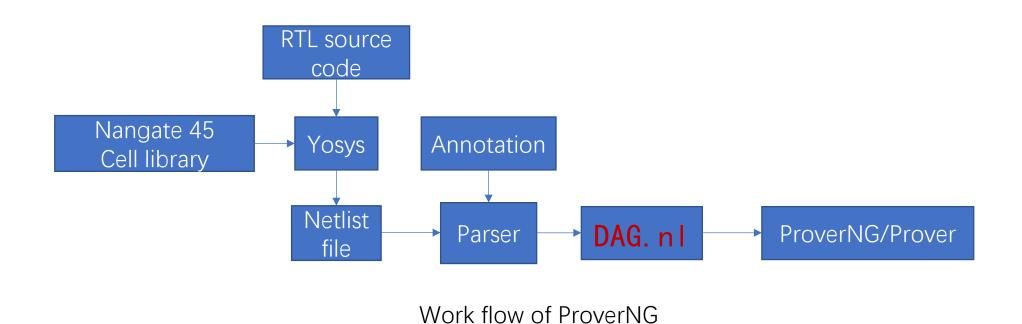
$op(n) \neq reg$							
D(n.lft) $D(n.rgt)$ $D(n)$ Example							
$i \in I$	$i \in I$	$i \in I$	$t_0 = a_0 \cdot b_0$				
$i \in I$	$j \in I$	U	$t_1 = a_0 \cdot b_1$				
U	R/I	U	$t_2 = a_0 b_1 + r$				
$i \in I$	R	I	$t_2 = r_0 a_0$				

Domain inference in Standard Probing Model

Domain inference in Glitch-extended Probing Model

ProverNG – the tool

Work flow of ProverNG



Benchmarks

- Order: 1-3
- Hardware Private Circuits
 - HPC1
 - HPC2
 - HPC3
- OPINI2

Security notions

Non-Interference

Strong Non-Interference

Probe Isolating Non-Interference

Comparison to SILVER, maskVerif, and IronMask

• *d*-NI verification results

Method	SILVER		maskVerif		IronMask		ProverNG	
Model	Std.	Gli.	Std.	Gli.	Std.	Gli.	Std.	Gli.
HPC1 o1	√[<0.001s]	[0.001s]	[0.001s]	[0.001s]	√[<0.001s]	√[<0.001s]	√[0.001s]	√[<0.001s]
HPC1 o2	⅔ [0.047s]	² /[0.223s]	⅔ [0.002s]	$\sqrt[2]{[0.005s]}$	$\sqrt[2]{[<0.001s]}$	$\sqrt[2]{[<0.001s]}$	⅔ [0.024s]	⅔ [0.030s]
HPC1 o3	∛ [12.330s]	$\sqrt[3]{[318.736s]}$	∛ [0.027s]	$\sqrt[3]{[0.027s]}$	$\sqrt[3]{[<0.001s]}$	$\sqrt[3]{[<0.001s]}$	∛ [4.343s]	√[20.590s]
HPC2 o1	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[0.001s]}$	¹ X [0.001s]	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$
HPC2 o2	∛ [0.050s]	⅔ [0.150s]	⅔ [0.020s]	² X [0.002s]	2 X[<0.001s]	2 X[<0.001s]	$\sqrt[2]{[0.017s]}$	⅔ [0.024s]
HPC2 o3	∛ [12.518s]	$\sqrt[3]{[290.257s]}$	³ X [0.090s]	³ X [0.003s]	 [<0.001s]	$\frac{3}{X}[<0.001s]$	∛ [2.968s]	$\sqrt[3]{[41.125s]}$
HPC3 o1	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[0.001s]}$	≍ [<0.001s]	1 X[<0.001s]	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[<0.001s]}$
HPC3 o2	∛ [0.085s]	$\frac{2}{4}$ [1.161s]	⅔ [0.005s]	⅔ [0.003s]	$\sqrt[2]{[<0.001s]}$	2 X[<0.001s]	⅔ [0.037s]	⅔ [0.404s]
HPC3 o3	∛ [17.422s]	√[19455.531s]	$\sqrt[3]{[0.039s]}$	$\sqrt[3]{[0.018s]}$	$\frac{3}{8}$ [<0.001s]	$\frac{3}{X}[<0.001s]$	∛ [5.286s]	√[9246.018s]
OPINI2 o1	$\sqrt[1]{[0.001s]}$	$\sqrt[1]{[< 0.001s]}$	$\sqrt[1]{}[0.001s]$	¹ X [0.001s]	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[< 0.001s]}$
OPINI2 o2	⅔ [0.086s]	$\sqrt[2]{[0.360s]}$	$\sqrt[2]{[0.023s]}$	² X [0.002s]	$\frac{2}{X}$ [<0.001s]	2 X[<0.001s]	⅔ [0.034s]	⅔ [0.076s]
OPINI2 o3	∛ [26.242s]	³ √[1083.457s]	³ X [0.065s]	³ X [0.002s]	 [<0.001s]	³ X [<0.001s]	∛ [6.035s]	∛ [229.734s]

Comparison to SILVER, maskVerif, and IronMask

• *d*-SNI verification results

Method	SILVER		maskVerif		IronMask		ProverNG	
Model	Std.	Gli.	Std.	Gli.	Std.	Gli.	Std.	Gli.
HPC1 o1	1 [0.001s]	¹ X [<0.001s]	[0.001s]	¹ X [0.001s]	√[<0.001s]	√[<0.001s]	[0.001s]	¹ X [<0.001s]
HPC1 o2	⅔ [0.037s]	¹ X [0.004s]	$\sqrt[2]{[0.004s]}$	2 X [0.001s]	2 X[<0.001s]	2 [<0.001s]	$\sqrt[2]{[0.018s]}$	1 [<0.001s]
HPC1 o3	∛ [13.747s]	¹ X [0.030s]	∛ [0.053s]	³ X [0.002s]	$\frac{3}{X}[<0.001s]$	$\frac{3}{7}$ [<0.001s]	∛ [5.805s]	¹ X [0.001s]
HPC2 o1	$\sqrt[1]{[<0.001s]}$	1 [<0.001s]	$\sqrt[1]{[0.002s]}$	1 X [0.001s]	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[0.001s]}$	1 [<0.001s]
HPC2 o2	⅔ [0.046s]	¹ X [0.003s]	$\sqrt[2]{[0.016s]}$	$\frac{2}{X}$ [0.001s]	2 X[<0.001s]	2 X[<0.001s]	$\frac{2}{4}$ [0.012s]	1 [<0.001s]
HPC2 o3	√[14.259s]	¹ X [0.029s]	³ X [0.137s]	³ X [0.003s]	 [<0.001s]	 (<0.001s]	∛ [3.667s]	$^{1}\!$
HPC3 o1	$\sqrt[1]{[<0.001s]}$	1 X[$<$ 0.001s]	$\sqrt[1]{[0.002s]}$	1 X [0.001s]	 [<0.001s]	 (<0.001s]	$\sqrt[1]{[<0.001s]}$	1 [<0.001s]
HPC3 o2	$\sqrt[2]{[0.076s]}$	¹ X [0.001s]	$\sqrt[2]{[0.005s]}$	$\frac{2}{X}$ [0.001s]	$\sqrt[2]{[<0.001s]}$	2 X[<0.001s]	⅔ [0.029s]	¹ X [0.001s]
HPC3 o3	$\sqrt[3]{[19.696s]}$	¹ X [0.006s]	$\sqrt[3]{[0.071s]}$	³ X [0.002s]	$\frac{3}{X}[<0.001s]$	3 X [<0.001s]	∛ [5.232s]	¹ X [0.001s]
OPINI2 o1	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[0.002s]}$	1 X[0.002s]	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[0.001s]}$
OPINI2 o2	⅔ [0.073s]	⅔ [0.345s]	$\sqrt[2]{[0.019s]}$	² X [0.003s]	2 X[<0.001s]	2 X[<0.001s]	⅔ [0.024s]	$\sqrt[2]{[0.061s]}$
OPINI2 o3	∛ [28.706s]	∛ [995.418s]	³ X [0.596s]	³ X [0.010s]	 [<0.001s]	 [<0.001s]	∛ [6.671s]	∛ [235.078s]

Comparison to SILVER, maskVerif, and IronMask

• *d*-PINI verification results

Method	SIL	SILVER		Verif	IronMask		ProverNG	
Model	Std.	Gli.	Std.	Gli.	Std.	Gli.	Std.	Gli.
HPC1 o1	√[<0.001s]	√[0.001s]			√[<0.001s]	√[<0.001s]	√[<0.001s]	√[<0.001s]
HPC1 o2	⅔ [0.060s]	⅔ [0.269s]			$\frac{2}{X}$ [<0.001s]	2 X[<0.001s]	$\sqrt[2]{[0.011s]}$	⅔ [0.020s]
HPC1 o3	$\sqrt[3]{[27.569s]}$	√[324.608s]			³ X [<0.001s]	$\frac{3}{X}[<0.001s]$	$\sqrt[3]{[5.203s]}$	∛ [19.450s]
HPC2 o1	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$			$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[< 0.001s]}$
HPC2 o2	⅔ [0.048s]	∛ [0.405s]			$\frac{2}{X}$ [<0.001s]	$\frac{2}{X}$ [<0.001s]	∛ [0.006s]	⅔ [0.027s]
HPC2 o3	$\sqrt[3]{[19.065s]}$	$\sqrt[3]{[3275.217s]}$			³ X [<0.001s]	$\frac{3}{X}[<0.001s]$	$\sqrt[3]{[3.005s]}$	∛ [55.778s]
HPC3 o1	$\sqrt[1]{}[0.001s]$	$\sqrt[1]{[<0.001s]}$	$N_{/}$	$^{\prime}\mathrm{A}$	1 X[<0.001s]	¹ X [<0.001s]	$\sqrt[1]{}[0.001s]$	$\sqrt[1]{[< 0.001s]}$
HPC3 o2	$\sqrt[2]{[0.067s]}$	√[1.785s]			$\frac{2}{X}$ [<0.001s]	² X [<0.001s]	⅔ [0.020s]	⅔ [0.188s]
HPC3 o3	∛ [21.269s]	³ √[23956.321s]			$\frac{3}{X}$ [<0.001s]	³ X [<0.001s]	∛ [4.582s]	∛ [2699.785s]
OPINI2 o1	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$			$\sqrt[1]{[< 0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[<0.001s]}$	$\sqrt[1]{[< 0.001s]}$
OPINI2 o2	⅔ [0.084s]	$\frac{2}{4}$ [1.000s]			² X [<0.001s]	2 X[<0.001s]	$\sqrt[2]{[0.014s]}$	$\sqrt[2]{[0.071s]}$
OPINI2 o3	∛ [33.592s]	∛ [14508.664s]			³ X [<0.001s]	³ X [<0.001s]	∛ [5.885s]	∛ [279.057s]

Discussion and Conclusion

Bottlenecks

- Complexity
 - > Exponential Explosion
 - ✓ S-boxes, round-functions: too many variables when constructing ROBDDs
 - Combinatorial Explosion
 - ✓ Higher order masking: too many combinations to be verified.
 - > ...

Conclusion

 ProverNG, an efficient and sound tool to verify compositional security notions under probing model.

Thank you!

ProverNG: https://github.com/Lucien98/ProverNG

Statistical Independence Check Based on ROBDDs

Subsets (Y)

Product over a set A: $\Pi_{x \in A} x$, the product of all elements in set A

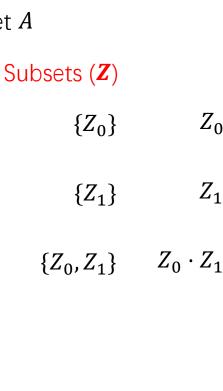
[KSM20]: Given two sets of Boolean random variables,

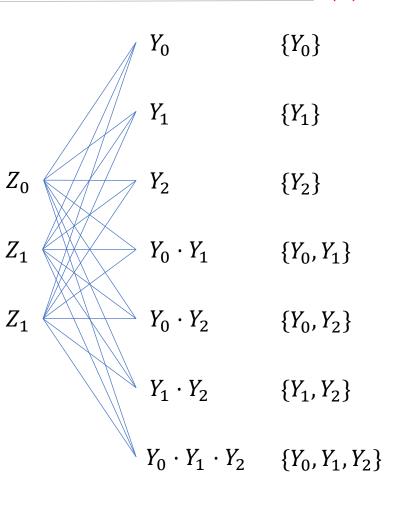
 $Z = \{Z_0, Z_1, \dots, Z_{n-1}\}$ and $Y = \{Y_0, Y_1, \dots, Y_{m-1}\}$, Z is

statistically independent of *Y* iff the product over any non-empty subset of *Z* is statistically independent of

the product over any non-empty subset of Y.

Verification complexity: $(2^n - 1)(2^m - 1)$





Slow Performance

Example: n = 2, m = 3

Domain Inference

Domain Inference

Guessing share domains for the variables in the correct simulation set S.

Input shares:
$$a = a_0 + a_1$$
, $b = b_0 + b_1$

We distinguish three types of domains

Share domain: $I = \{0,1,\dots,d\}$

Random domain: R

Unknown domain: U

$$Dom(a_0) = 0 \in I$$

$$Dom(r_0) = R$$

$$Dom(a_0b_1) = U$$

