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Artificial Intelligence: Boon for Security Evaluations of
Cryptosystems
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cryptographic implementation
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(Our experience with) Challenges and Future of Machine Learning in SCA
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Profiled Deep Learning based Attack

- Advantage of Deep Learning Approach \

* Template attacks (profiled attacks) are based on the Gaussian Assumption of the leakage distribution
* Deep Learning-based approach relaxes the Gaussian Assumption
* The acquired traces do not require any types of pre-processing (like trace synchronization, denoising,
feature selection, feature extraction, etc.)
* The deep learning model can combine multiple leakage points
*  Works efficiently against masking-based countermeasures than classical statistical methods
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H. Maghrebi et al., “Breaking cryptographic implementations using deep learning techniques.” SPACE 2016




Al for Implementation Security : The Way
Forward

/Pertinent guestions facing the implementation security community for Al adoption:




Al for Implementation Security : The Way
Forward

/Pertinent guestions facing the implementation security community for Al adoption:
* Lack of documentation for Al specific pitfalls in implementation security context

e How to pre-process data (like side-channel traces) to render them training friendly ?

e How to avoid overfitting ?

e Which architectures to use for what use-cases? Is deep = better?

e How to ensure quality of training data? Issues like class imbalance, requisite amount of data.
e Isthe inference result interpretation reliable (like high accuracy, but on unbalanced data) ?
e Statistical tests (like CPA) are inherently portable. But what about ML models?

Not all implementation security engineers may know ML internals/details to take decisional calls on these issues
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Lack of documentation for Al specific pitfalls in implementation security context

e Example: [1]

Long traces in SCA
Few informative sample
points in the trace

\

[1] Hajra, Suvadeep, et al. "On the instability of softmax attention-based deep learning models in side-channel analysis." leee transactions on information forensics and security 19 (2023): 514-528.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Lack of documentation for Al specific pitfalls in implementation security context

e Example: [1]

Input layer Hidden layers Output layer
|
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Long traces in SCA Attack using Convolutional Neural Network
Few informative sample
points in the trace

\

[1] Hajra, Suvadeep, et al. "On the instability of softmax attention-based deep learning models in side-channel analysis." leee transactions on information forensics and security 19 (2023): 514-528.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Lack of documentation for Al specific pitfalls in implementation security context

e Example: [1]

Input layer Hidden layers Output layer

v

Long traces in SCA Attack using Convolutional Neural Network
Few informative sample Pitfall!!! High gradient for softmax; Highly non-
\ points in the trace smooth loss surface; unstable learning

[1] Hajra, Suvadeep, et al. "On the instability of softmax attention-based deep learning models in side-channel analysis." leee transactions on information forensics and security 19 (2023): 514-528.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Lack of documentation for Al specific pitfalls in implementation security context

e Example: [1]

Input layer Hidden layers Output layer
|

v

Long traces in SCA Attack using Convolutional Neural Network
Few informative sample Fix: Machine Learning specific fixes (multi-head
\ points in the trace softmax) for accurate SCA using CNNs

[1] Hajra, Suvadeep, et al. "On the instability of softmax attention-based deep learning models in side-channel analysis." leee transactions on information forensics and security 19 (2023): 514-528.




Al for Implementation Security : The Way
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/Pertinent guestions facing the implementation security community for Al adoption:
* Lack of documentation for Al specific pitfalls in implementation security context

e How to pre-process data (like side-channel traces) to render them training friendly ?

e How to avoid overfitting ?

e Which architectures to use for what use-cases? Is deep = better?

e How to ensure quality of training data? Issues like class imbalance, requisite amount of data.
e Isthe inference result interpretation reliable (like high accuracy, but on unbalanced data) ?
e Statistical tests (like CPA) are inherently portable. But what about ML models?

Not all implementation security engineers may know ML internals/details to take decisional calls on these issues

Way Forward:
e Document problems with vanilla ML approaches (i.e. what does not work) for dissemination.
® Foster community dialogue at the intersection of SCA and Machine Learning
e Develop whitepapers and RFC documents to answer some of the questions raised here
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Al for Implementation Security : The Way
Forward

/Pertinent guestions facing the implementation security community for Al adoption:
* Need for interdisciplinary know-how to improve implementation security testing through Al

e Are there problems in SCA whose counterparts exist in machine learning?
e Does Al make certain SCA specific problems easier to solve?

Exploring the intersection of Al and SCA requires intricate intertwining of two completely different domains.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1]

Mechanisms in machine learning
capable of capturing long, temporal
input semantics ?

v

Power

Long traces in SCA
Few informative sample
points in the trace

\ /

[1] Hajra, Suvadeep, Siddhartha Chowdhury, and Debdeep Mukhopadhyay. "Estranet: An efficient shift-invariant transformer network for side-channel analysis." IACR Transactions on Cryptographic
Hardware and Embedded Systems 2024.1 (2024): 336-374.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1] Tion
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EstraNet : SCA specific architecture based on
advances in ML specific techniques - new
attention mechanisms (relative positional

Long traces in SCA

Few informative sample . . .
points in the trace encoding) and layer normalization

\ /
[1] Hajra, Suvadeep, Siddhartha Chowdhury, and Debdeep Mukhopadhyay. "Estranet: An efficient shift-invariant transformer network for side-channel analysis." IACR Transactions on Cryptographic
Hardware and Embedded Systems 2024.1 (2024): 336-374.
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/Pertinent guestions facing the implementation security community for Al adoption:
* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1], [2]

EstraNet does not work beyond 40K
features. What if the target
- implementation has > 40K features in

e © o o === "m,u;@ side-channel trace?

-
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Mechanisms in machine learning for
Very Long traces in operating a “collection” of models in
SCA specific topologies?

[2] Hajra, Suvadeep, Soumi Chatterjee, and Debdeep Mukhopadhyay. "UNIDLE: A Unified Framework for Deep Learning-based Side-channel Analysis." Cryptology ePrint Archive (2024).




Al for Implementation Security : The Way

Forward

e Example: [1], [2]
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/Pertinent guestions facing the implementation security community for Al adoption:

* Need for interdisciplinary know-how to improve implementation security testing through Al

Task 1 Task 2 Task T
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Exploits properties of interactions between ML
models to construct a hierarchical topology of
models (100K features in SCA traces)

[2] Hajra, Suvadeep, Soumi Chatterjee, and Debdeep Mukhopadhyay. "UNIDLE: A Unified Framework for Deep Learning-based Side-channel Analysis." Cryptology ePrint Archive (2024).
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e Example: [1], [2], [3]
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/Pertinent guestions facing the implementation security community for Al adoption:

* Need for interdisciplinary know-how to improve implementation security testing through Al

Higher-order t-test can only capture different
statistical moments, which has already been
shown to be sub-optimal in the context of SCA
leakages, even resulting in false negatives

Can machine learning help build an automated
test for multivariate inputs?

[3] Saha, Sayandeep, et al. "Learn from your faults: leakage assessment in fault attacks using deep learning." Journal of Cryptology 36.3 (2023): 19.
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e Example: [1], [2], [3]
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/Pertinent guestions facing the implementation security community for Al adoption:

K-Fold
Cross-Validation

e

@
Binary Labels g

* Need for interdisciplinary know-how to improve implementation security testing through Al

Validation
Accuracy
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Is the accuracy
result more than
a random guess?

A
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DL-FALAT : Machine learning can learn highly

multivariate functions and complex inter-

relations between inputs, implying an ideal
candidate fault analysis automation.

[3] Saha, Sayandeep, et al. "Learn from your faults: leakage assessment in fault attacks using deep learning." Journal of Cryptology 36.3 (2023): 19.
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/Pertinent guestions facing the implementation security community for Al adoption:
* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1], [2], [3], [4]

Even most ML based fault detection methods
require functioning over known fault models.
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Automated Fault
Analysis with unknown
fault models

\

[4] Guo, Hao, et al. "ExploreFault: Identifying exploitable fault models in block ciphers with reinforcement learning." 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1], [2], [3], [4]
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Reinforcement Learning (RL) based Machine Learning
pipeline with active feedback loop for exploring newer,
previously undiscovered fault models

Automated Fault
Analysis with unknown
fault models

[4] Guo, Hao, et al. "ExploreFault: Identifying exploitable fault models in block ciphers with reinforcement learning." 2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, 2023.
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* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1], [2], [3], [4], [5]

Statistical Analyses is difficult (even NIST rolled
back SP-800-22 for use for testing PRNGs in
production level cryptosystems) ?

v

Can properties of machine learning help in
designing measures of entropy quality?

Testing quality of
entropy sources used in
cryptosystem-under-test

\

/Pertinent guestions facing the implementation security community for Al adoption: \

/

[5] Pratihar, Kuheli, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. "Latent RAGE: Randomness Assessment Using Generative Entropy Models." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 43.11 (2024): 3503-3514.
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/Pertinent guestions facing the implementation security community for Al adoption: \

* Need for interdisciplinary know-how to improve implementation security testing through Al

e Example: [1], [2], [3], [4], [5]
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Use ML specific hypothesis - patterns are likely to occur on low-
Testing quality of dimensional manifolds - to detect weak entropy sources by
entropy sources used in studying their projections to lower dimensional manifolds using
cryptosystem-under-test Variational Auto-Encoders.
\ /

[4] Pratihar, Kuheli, Rajat Subhra Chakraborty, and Debdeep Mukhopadhyay. "Latent RAGE: Randomness Assessment Using Generative Entropy Models." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 43.11 (2024): 3503-3514.
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/Pertinent guestions facing the implementation security community for Al adoption:
* Need for interdisciplinary know-how to improve implementation security testing through Al

e Are there problems in SCA whose counterparts exist in machine learning?
e Does Al make certain SCA specific problems easier to solve?

Exploring the intersection of Al and SCA requires intricate intertwining of two completely different domains.

Way Forward:

® Explore more and more interdisciplinary solutions to problems in SCA
e Induct interdisciplinary experts, foster wider collaboration, and keep trying to find intersections in problems

o




Al for Implementation Security : The Way
Forward

/Pertinent guestions facing the implementation security community for Al adoption:
e Consensus on how we build upon each other’s research

e Statistical tests are algorithms; we publish the same, and anyone can use it.
e Trained ML models + collected datasets are often considered as IPs. Not everyone open-sources them!
e Alack of consensus on how to share models/datasets will create isolated islands in the implementation

security community.
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/Pertinent guestions facing the implementation security community for Al adoption:
e Consensus on how we build upon each other’s research
e Statistical tests are algorithms; we publish the same, and anyone can use it.
e Trained ML models + collected datasets are often considered as IPs. Not everyone open-sources them!

e Alack of consensus on how to share models/datasets will create isolated islands in the implementation
security community.

e Licensing
e What is the goodwill policy of licensing a model for testing my implementation, that had been partially
trained on dataset curated by somebody else?

e Consensus on licensing of such models, especially if they are transfer learned!

Agreeing upon suitable licensing of ML in SCA research is crucial for the field to boom!

o




Al for Implementation Security : The Way
Forward

@rtinent questions facing the implementation security community for Al adoption:
e Consensus on how we build upon each other’s research

e Statistical tests are algorithms; we publish the same, and anyone can use it.
e Trained ML models + collected datasets are often considered as IPs. Not everyone open-sources them!
e Alack of consensus on how to share models/datasets will create isolated islands in the implementation

security community.
e Licensing

e Whatis the goodwill policy of licensing a model for testing my implementation, that had been partially trained

on dataset curated by somebody else?
e Consensus on licensing of such models, especially if they are transfer learned!

Agreeing upon suitable licensing of ML in SCA research is crucial for the field to boom!

As a lab, we try to open-source both source code (model architecture, hyperparameters) and datasets for the wider

community to build upon.

- https://qgithub.com/felu-mitti/DL_FALAT
-\https://qithub.com/suvadeep—iitb/EstraNet

/



https://github.com/felu-mittir/DL_FALAT
https://github.com/felu-mittir/DL_FALAT
https://github.com/felu-mittir/DL_FALAT
https://github.com/suvadeep-iitb/EstraNet
https://github.com/suvadeep-iitb/EstraNet
https://github.com/suvadeep-iitb/EstraNet

Al for Implementation Security : The Way
Forward

/Pertinent guestions facing the implementation security community for Al adoption:

e Explainability and Democratization!
e Sophisticated toolings => use-cases limited to a small community of experts!
e Enabling wider adoption of implementation security testing is paramount.

e Apart from automation, explainability and democratization of our research goes a long way.

Constant efforts are needed on our part to engage non-experts in ML to adopt our workflows in their testing
workflows.
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/Pertinent guestions facing the implementation security community for Al adoption:
e Explainability and Democratization!

e Explainability example : [1]

Hard to know why a machine learning model
makes the decision it does. And hard to capture
SCA specific semantics in such contexts. Without

a clearer understanding of how the model
internally processes information, systematic
P improvements beyond trial-and-error become

- 0 difficult

Power

v

How does a security auditer
explain even a successful audit
by machine learning

\ doanlavmaoant?

Can a combination of (1) machine learning, (2)
visualization techniques, and (3) statistics help
with explaining SCA leakage in ML models?

n
“vue v LILILA =2 B B Y

[1] Hajra, Suvadeep, and Debdeep Mukhopadhyay. "Black Box to Blueprint: Visualizing Leakage Propagation in Deep Learning Models for SCA." Cryptology ePrint Archive (2025).
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/Pertinent guestions facing the implementation security community for Al adoption: \

e Explainability and Democratization!

e Explainability example : [1] peer «/\VWJ

A

Features

g . 1)
Final Layer T T T
< L] L] L] L
% ? L] L] L]
é Layer k
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\ ? 4
Input Trace Intermediate Feature Vectors
How does a security auditer Generalizable method to visualize flow of
explain even a successful audit leakage while machine learning model processes
by machine learning SCA traces

\ doanlavmaoant?

v LILILA =2 B B Y

\¥ |\ =
[1] Hajra, Suvadeep, and Debdeep Mukhopadhyay. "Black Box to Blueprint: Visualizing Leakage Propagation in Deep Learning Models for SCA." Cryptology ePrint Archive (2025).
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/Pertinent guestions facing the implementation security community for Al adoption: \

e Explainability and Democratization!

e Explainability example : [1]
e Democratization example: [2]

o ‘.

™ 8 = Can we use Al agents to automate and abstract
FRAMEWORK » . out details of the framework?

[= @' e " @

v

Given a framework for side-channel
leakage assessment, how do we get a

non-expert to use it?
\ /

[2] Mandal, Upasana, et al. "uLAM: A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation." Proceedings of the 43rd IEEE/ACM International Conference on Computer-
Aided Design. 2024.
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/Pertinent guestions facing the implementation security community for Al adoption: \
. ege . . = Code feeder runs code and System
e Explainability and Democratization! - captures HPCvalues  configuration
Dataset > 9 {§}@ e
o @ A Training Dataset
. oye E=|| é Fine-tuning
e Explainability example : [1] AR —
e Democratization example: [2] ‘ ﬂﬂlﬂ. o%
HPC values
o TR Q) /
= 2 Feeder p & />
Code feeder runs code under side- Code
\ ¢ & channel attacks and captures HPC
\ = Deploy Phase
o FRAMEWORK = > o —> spem (=
a n . ) e Gl \ @ 1. Detection (Attack / No Attack)
‘ . 5l Code . Part of the code is vulnerable.
e 0 \ J Cop I‘LLA'M I ; :Ailt}gation
—>»| HPC vector E
Given a framework for side-channel _
leakage assessment, how do we get a Design of a LLM based framework to abstract out
’ . . . .
non-expert to use it? details of internal side-channel leakage detection, to be
\ used naturally by non-experts by simple English )
[2] Mandal, Upasana, et al. "uLAM: A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation." Proceedings of the 43rd IEEE/ACM International Conference on Computer-

Aided Design. 2024.




Al for Implementation Security : The Way
Forward

@ummary) Pertinent questions facing the implementation security community for Al adoption:

Lack of documentation for Al specific pitfalls in implementation security context

Need for interdisciplinary know-how to improve implementation security testing through Al

Consensus on how we build upon each other’s research

Explainability and Democratization

A big shout out to OPTIMIST in making inroads on taking steps in improving the quality and reproducibility of
implementation testing!

o




Thank You

For any query please feel free to contact

Debdeep Mukhopadhyay: debdeep.mukhopadhyay@gmail.com
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