
On the Suitability of SCARR for

Cross-Device Leakage Analysis
George Crane, Dean Sullivan

University of New Hampshire

Resilient Architecture Lab (RAL)

Outline

⚫ Profiled Side Channel Analysis & Cross-Device

SCA (3 minute crash course)

⚫ Technical challenges of performing cross-device

SCA

⚫ The SCARR SCA framework

⚫ Case Study: Extending SCARR for our use

case

Goals for Audience

⚫ See end to end the full process of leakage

analysis on an embedded system

⚫ Understand the key challenges faced by

researchers performing SCA

⚫ Gain familiarity with the SCARR tool, see if it

can meet your challenges

⚫ Learn to make an oracle for leakage analysis

Security in Embedded Devices

Microcontrollers are everywhere, including

security critical applications

Security in Embedded Devices

Microcontrollers are everywhere, including
security critical applications

These applications rely on the device’s ability to
securely perform cryptographic operations

⚫ Authentication

⚫ Encryption

⚫ Integrity validation...

Security in Embedded Devices

Side-Channels expose data, including secrets

like crypto-keys, as it is processed by the device.

Predicted

Secret

1. Attack

Side Channel

Measurements

Known

Input

Security in Embedded Devices

Side-Channels expose data, including secrets

like crypto-keys, as it is processed by the device.

Profiled Side-Channel Analysis (SCA)

constructs a statistical model (profile) of a device’s

leakage

Device Profile

1. Profiling 2. Attack

Predicted

Secret

Side Channel

Measurements

Side Channel

Measurements

Cross-Device SCA

Theory: Profiles can be applied across devices

Practice: Profiles can be applied across devices

with drastically reduced accuracy

Dev 1

Dev 1 Profile

Dev 2

1. Profiling 2. Attack

Really Bad

Prediction

Side Channel

Measurements

Side Channel

Measurements

Cross-Device SCA

Theory: Profiles can be applied across devices

Practice: Profiles can be applied across devices

with drastically reduced accuracy

Our research in this under-explored field aims to

better explain and reduce this discrepency

Cross-Device SCA

We use leakage quantification techniques (LQ)

to assess devices. LQ directly reveals where and

how much a device leaks.

We aim to identify differences between identical

devices, and develop a methodology to normalize

for it during the profiling phase.

Cross-Device SCA

We use leakage quantification techniques (LQ)

to assess devices. LQ directly reveals where and

how much a device leaks.

However… Identifying all leakage is more difficult

than exploiting some leakage

⚫ BIG datasets

Enter: SCARR

SCARR is an open source SCA framwork

implemented in python

Enter: SCARR

SCARR is an open source SCA framwork
implemented in python

⚫ Supports a number of common LQ techniques
(e.g. SNR, NICV, etc.)

⚫ Streaming algorithms to support out-of-core
computing and some parallelism

⚫ Doesn’t natively support some desired
functionality, but is extendable

SCARR Example
Load the dataset

dataset = TraceHandler(fileName="SAM4S 100000 random Traces
[50c].zarr", batchSize=5000)

SCARR Example
Load the dataset

dataset = TraceHandler(fileName="SAM4S 100000 random Traces
[50c].zarr", batchSize=5000)

We will calculate SNR based on value of input ciphertext

engine = SNR(model_value=CipherText())

positions=[i for i in range(16)] # Target all 16 bytes of text

container = Container(options=ContainerOptions(engine=engine,
handler=dataset), model_positions=positions)

SCARR Example
Load the dataset

dataset = TraceHandler(fileName="SAM4S 100000 random Traces
[50c].zarr", batchSize=5000)

We will calculate SNR based on value of input ciphertext

engine = SNR(model_value=CipherText())

positions=[i for i in range(16)] # Target all 16 bytes of text

container = Container(options=ContainerOptions(engine=engine,
handler=dataset), model_positions=positions)

container.run()

results = container.get_result()

SCARR Example

SCA

Dataset

LQ

Our example analysis looks like this

Power

Traces

Labels

(Ciphertext)

The Oracle

We want to be able to do this, for

any intermediate value

OracleSCA

Dataset

LQ

Power

Traces Labels

(int. values)

The Oracle

OracleSCA

Dataset

LQ

We want to be able to do this, for

any intermediate value

SCARR doesn’t

support this

natively, so its up

to us to implement.

How can we

achieve this

without making

extra work for

ourselves?

Power

Traces Labels

(int. values)

The Oracle: Implemented

Instrumented

Firmware
OracleSCA

Dataset

LQ

Power

Traces Labels

(int. values)

Keys &

Input Texts

Keys, Texts,

Target Step

Intermediate

Values

The Oracle: Implemented

Instead of writing a new ModelValue class for every
operation of every cipher we want to target

engine = SNR(model_value=AES256Round1Sbox())

We instrument the cipher firmware once and get all
that for free!

engine = SNR(model_value=AESOracle(

 type=256, round=1, step=”SBOX”

))

(SBOX)

(SBOX)

(SBOX)

(SBOX)

Extending SCARR for Cross-Device

Leakage Analysis

How can our new oracle be integrated into

SCARR?

Extending SCARR for Cross-Device

Leakage Analysis

How can our new oracle be integrated into

SCARR? It can’t

Extending SCARR for Cross-Device

Leakage Analysis

How can our new oracle be integrated into

SCARR? It can’t*

*Without extensive modification to the internals of

the framework.

SCARR Limitations for Cross-

Device Leakage Analysis

⚫ All data is internally managed by SCARR. If an

analysis requires a different dataflow, it will be a

problem.

⚫ SCARR dataset format forces storage of

redundant data, which could otherwise be

calculated on demand with an oracle.

Our Homemade Solution
dset = ZarrHandler("SAM4S 100000 random Traces [50c].zarr",
chunks=10000)

⚫ Datasets are loaded lazily to minimize memory

overhead, but can be accessed arbitrarily like an array.

Our Homemade Solution
dset = ZarrHandler("SAM4S 100000 random Traces [50c].zarr",
chunks=10000)

oracle = OracleAES(

 aes_type=128, lazy=False,

 keys=dset.get(“key”), texts=dset.get(“ciphertext”),

 round=1, step=”SBOX”)

⚫ All operations are self-contained, and can be combined

into pipelines like those in the SCARR backend

Our Homemade Solution
dset = ZarrHandler("SAM4S 100000 random Traces [50c].zarr",
chunks=10000)

oracle = OracleAES(

 aes_type=128, lazy=False,

 keys=dset.get(“key”), texts=dset.get(“ciphertext”),

 round=1, step=”SBOX”)

snr = SNR(traces=dset.get(“traces”), labels=oracle.result)

Our Homemade Solution

Advantages:

⚫ Complexities of streaming algorithms are mostly
handled for us

⚫ Enables simultaneous & interdependent
analysis of multiple datasets

⚫ Doesn’t require an arbitrary dataset format

Thank You!

Our analysis code and oracle proof of concept are
publicly available, check it out!

https://github.com/cooc1501/OPTIMIST-25

https://github.com/cooc1501/OPTIMIST-25
https://github.com/cooc1501/OPTIMIST-25
https://github.com/cooc1501/OPTIMIST-25

	Slide 1: On the Suitability of SCARR for Cross-Device Leakage Analysis
	Slide 2: Outline
	Slide 3: Goals for Audience
	Slide 4: Security in Embedded Devices
	Slide 5: Security in Embedded Devices
	Slide 6: Security in Embedded Devices
	Slide 7: Security in Embedded Devices
	Slide 8: Cross-Device SCA
	Slide 9: Cross-Device SCA
	Slide 10: Cross-Device SCA
	Slide 11: Cross-Device SCA
	Slide 12: Enter: SCARR
	Slide 13: Enter: SCARR
	Slide 14: SCARR Example
	Slide 15: SCARR Example
	Slide 16: SCARR Example
	Slide 17: SCARR Example
	Slide 18
	Slide 19: The Oracle
	Slide 20: The Oracle
	Slide 21: The Oracle: Implemented
	Slide 22: The Oracle: Implemented
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Extending SCARR for Cross-Device Leakage Analysis
	Slide 28: Extending SCARR for Cross-Device Leakage Analysis
	Slide 29: Extending SCARR for Cross-Device Leakage Analysis
	Slide 30: SCARR Limitations for Cross-Device Leakage Analysis
	Slide 31: Our Homemade Solution
	Slide 32: Our Homemade Solution
	Slide 33: Our Homemade Solution
	Slide 34: Our Homemade Solution
	Slide 35: Thank You!

