# **Hardware Challenges in PQC**



SCIENCE PASSION TECHNOLOGY

27<sup>th</sup> March 2025 OPTIMIST

Sujoy Sinha Roy Graz University of Technology Small survey asking two questions:

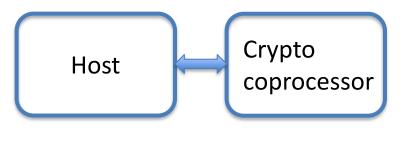
- 1. What makes hardware design for PQC challenging?
- 2. Why is it non-trivial to reuse or port PQC hardware designs?

## **1. Mathematical Complexity and Diversity**

PQC mathematical foundations

- Lattice-based
- Multivariate-based
- Hash-based
- Code-based
- Isogeny-based

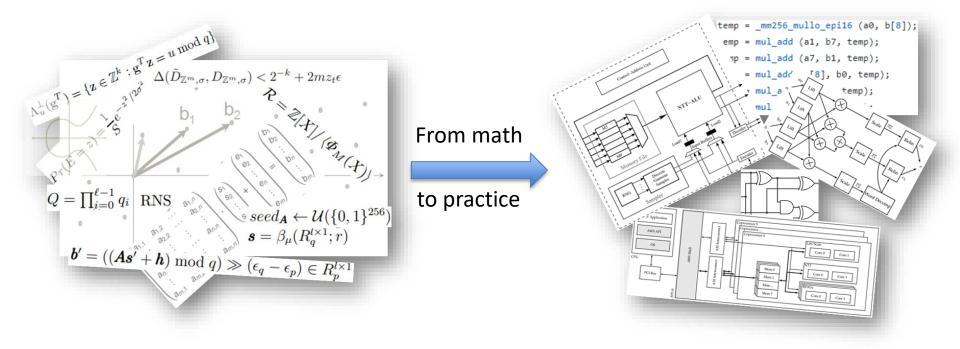
+ PQC schemes add various optimizations


# **1. Mathematical Complexity and Diversity**

PQC mathematical foundations

- Lattice-based
- Multivariate-based
- Hash-based
- Code-based
- Isogeny-based

+ PQC schemes add various optimizations


#### Coprocessor needs to support KEM + DSA



Challenges:

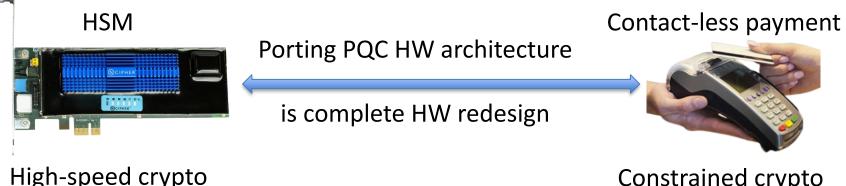
- Diverse math foundations
- Different parameters
- $\rightarrow$  Complex architectural requirements

#### 2. From Crypto Math to Hardware – Sequential Process



Cryptographers prioritize security

HW designers work within given spec


Feedback loop will improve situation

## 3. Hardware gives Efficiency but lacks Flexibility

- You can't scale up/down like in software
- Every new use case = partial redesign

## 3. Hardware gives Efficiency but lacks Flexibility

- You can't scale up/down like in software
- Every new use case = partial redesign



e.g., 8,000 DSA/s

Constrained crypto e.g., low power

### 3. Hardware gives Efficiency but lacks Flexibility – Case study MAYO

 $MAYO_3$  signing on SW

- High-end Intel/AMD = 1,200/sec\*
- Constrained Arm M4 = 0.5/sec\*

### 3. Hardware gives Efficiency but lacks Flexibility – Case study MAYO

 $MAYO_3$  signing on SW

- High-end Intel/AMD = 1,200/sec\*
- Constrained Arm M4 = 0.5/sec\*

MAYO<sub>3</sub> signing on HW (high-performance)

- Kintex-7 FPGA = 1,500/sec<sup>#</sup>
- 28nm ASIC = 25,000/sec<sup>#</sup>

Can we use the same HW architecture for contactless cards?

\*MAYO <u>https://pqmayo.org/assets/specs/mayo.pdf</u> #Whipping MAYO paper from CCS 2024

#### 3. Hardware gives Efficiency but lacks Flexibility – Case study MAYO

 $MAYO_3$  signing on SW

- High-end Intel/AMD = 1,200/sec\*
- Constrained Arm M4 = 0.5/sec\*

MAYO<sub>3</sub> signing on HW (high-performance)

- Kintex-7 FPGA = 1,500/sec<sup>#</sup>
- 28nm ASIC = 25,000/sec<sup>#</sup>
- 2 mm<sup>2</sup> area, 4 W power in ASIC

Can we use the same HW architecture for contactless cards?

→ We need a new design for low area and power

\*MAYO <u>https://pqmayo.org/assets/specs/mayo.pdf</u> #Whipping MAYO paper from CCS 2024 Starting from a given git RTL project, how easy it is to get the hardware?

## 4. Design reusability and portability issues

- 1. Development environment setup
  - Vivado/Vitis installation 50+ GB
  - Cadence/Synopsys licensing
  - Toolchain version alignment
  - Board-specific configurations

## 4. Design reusability and portability issues

- 1. Development environment setup
  - Vivado/Vitis installation 50+ GB
  - Cadence/Synopsys licensing
  - Toolchain version alignment
  - Board-specific configurations
- 2. Design implementation and testing
  - IP blocks are rather problematic
  - Simulation, synthesis, placement, ..., take huge time
  - Platform variations

## **Closing thoughts**

- Hardware = design + optimization + platform-specific tuning
- PQC adds:
  - Complex math,
  - Larger data,
  - Diverse application demands
- Reuse and portability remain open research challenges