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WORKING DOCUMENT​
ACCELERATION OF AI FOR IMPLEMENTATION SECURITY TESTING 

 
This document reviews the state of open tools, data and methods related to the use of AI 

acceleration platforms and AI algorithms for implementation security testing. The document also 
identifies the key areas for improvements and potential for standardization. Previous OPTIMIST 

documents already discuss the file format for side-channel traces, the capture interface, and 
PQC testing methods for implementation security testing campaigns.  
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The document takes a dual view on hardware implementation security testing and AI. First, AI 
techniques can improve the analysis of designs for implementation security vulnerabilities. 
Second, AI implementations themselves may be susceptible to implementation security 
vulnerabilities. Either aspect of AI and hardware security is the subject of active research with 
many unresolved questions. The working group aims to identify basic reference materials for 
new researchers, topic trees and references for existing researchers, and opportunities for open 
tools, interfaces and metrics to drive AI for security/ security for AI. 

I.​ Opening Talks 
The plenary session of the working group (17 April 2025) includes three invited talks. The 
slides are available for download. 

●​  Debdeep Mukhopadyay, “Side Channel and Fault Attack Testing of Cryptosystems in 
the view of Dr AI”. 

●​ Stjepan Picek, “Machine Learning-based Side-channel Analysis and Evaluation” 
●​ Jakub Breier, “AI-accelerated Implementation Testing: Research vs Practice” 

 
The talks emphasize AI techniques in the context of side-channel analysis and fault injection, 
although the speakers point to the broad application of AI techniques for implementation attacks 
(such as for example Trojan detection, and cybersecurity vulnerability detection/patching). Both 
profiled and non-profiled techniques are applicable, and profiled techniques can outperform 
known classic techniques provided that the trained AI model can be ported to the actual 
inference target. The speakers identify the following common challenges regarding AI for 
Implementation Security. 

1.​ There is a need for guidelines to help security engineers apply AI to implementation 
attacks. Such guidelines should cover data pre-processing, methods to avoid overfitting, 
recommended architectures in terms of the use-cases, and evaluation of training data 
quality. 

2.​ There is a need for guidelines to support security engineers in enabling portability, such 
as how a model trained on one target can be applied to a different target. 

3.​ There is a need for a consensus on how to share and/or license trained ML models and 
datasets for implementation security testing. 

4.​ There is a need for additional datasets that can be used as a reference to test the quality 
of AI based attacks, especially for side-channel analysis. Such datasets must prioritize 
portability, stronger countermeasures, different cryptographic ciphers, and different 
hardware targets. 
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II.​ Fundamentals of AI 
The working group collected the following pointers as a starting point for new researchers 
and practitioners in the field of AI for implementation security. 
 

●​ Machine Learning Networks 
○​ Andrew Ng's Machine Learning (Coursera) — Lectures 1–3 
○​ Survey on using ML for SCA 

●​ Training and Testing 
○​ Practice Template Attacks  
○​ Practice Profiling Attacks with Neural Networks 

●​ Tools 
○​ PyTorch 
○​ Keras and SciKit 
○​ JAX/Flax 
○​ Code to start with:  

■​ https://github.com/pace-tl-ntu/Pytorch_Baseline_DLSCA (Single DNN) 
■​ https://github.com/pace-tl-ntu/Pytorch_Baseline_Ensemble_DLSCA 

(Ensemble DNNs) 
■​ https://github.com/AISyLab/AISY_Framework 
■​ https://github.com/ANSSI-FR/ASCAD 
■​ GPAM and sedpack tutorials: 

https://google.github.io/sedpack/tutorials/sca/dataset/ 
https://google.github.io/sedpack/tutorials/sca/gpam/ 

●​ Hyperparameter Search Methods 
○​ SciKit based hyperparameter tuning 
○​ Keras Tuner 
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●​ L. Masure, C. Dumas, and E. Prouff, "A comprehensive study of deep learning for 
side-channel analysis," IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 1, pp. 
348–375, 2019, doi: 10.13154/tches.v2020.i1.348-375. 

●​ G. Perin, Ł. Chmielewski, and S. Picek, "Strength in numbers: Improving generalization 
with ensembles in machine learning-based profiled side-channel analysis," IACR Trans. 
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 337–364, 2020, doi: 
10.13154/tches.v2020.i4.337-364. 

●​ L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, "Revisiting a methodology for 
efficient CNN architectures in profiling attacks," IACR Trans. Cryptogr. Hardw. Embed. 
Syst., vol. 2020, no. 3, pp. 147–168, 2020, doi: 10.13154/tches.v2020.i3.147-168. 

●​ J. Rijsdijk, L. Wu, G. Perin, and S. Picek, "Reinforcement learning for hyperparameter 
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2023, no. 1, pp. 401–437, 2023, doi: 10.46586/tches.v2023.i1.401-437​
 

III.​ AI for Implementation Attacks 
The working group discussed a structured representation of the domain of AI for Implementation 
Attacks with 7 major topics.​
 

●​ Standard Architectures for AI based Implementation Security Testing 
○​ CUDA 

●​ Countermeasure Design 
○​ Randomization and Shuffling 
○​ Generating Secure Implementations 
○​ Hardware Trojan Detection 
○​ EMFI and voltage glitch detection 
○​ Pre-silicon vs Post-silicon 

■​ Presilicon - need specific training, need specific testing (develop 
countermeasures iteratively) 

●​ Side Channel Analysis 
○​ Portability 
○​ Profiled vs Non-profiled Analysis 
○​ Collision Neural Networks 

●​ Fault Injection 
○​ AI-based approaches for Fault Detection 
○​ Fault Injection Parameter Search 
○​ Formal/Symbolic AI 

●​ Advanced AI Techniques 
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○​ Reinforcement Learning 
○​ Hyperparameter Optimization 
○​ Graph Neural Networks 
○​ Genetic Algorithms 
○​ Bayesian Techniques 
○​ Diffusion Models 
○​ Explainability: Explainable Artificial Intelligence (XAI) in hardware security 

enhances the trust and accountability of AI systems. By applying XAI concepts to 
hardware security, development of secure and transparent AI systems can be 
achieved.  

○​ Attribution 
○​ Occlusion Methods  
○​ Uncertainty Estimation 
○​ Interpretable Neural Networks 

●​ New Directions and Needs 
○​ Tiny Models for the edge 
○​ Zero-day evaluation 
○​ Explainability Toolkit 
○​ Pretrained libraries 
○​ Model Zoo 
○​ Pretrained Datasets (Transfer Learning): 

■​ Standard Dataset 
■​ Higher Order Masking 
■​ Portability 

○​ Huggingface for dataset storage 
○​ Kaggle for dataset storage (around 200GB) 

 
AI algorithms can also be used for the evaluation of implemented countermeasures against 
implementation attacks along with Test Vector Test Vector Leakage Assessment (TVLA). 
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IV.​ Implementation Attacks on AI 
The working group also discussed implementation attacks on AI by starting with the attacker 
model. Because of the diversity of use cases and attack models, when compared to traditional 
cryptographic assets, the working group selected two specific attacker models for further 
discussion. The first attacker model applies to the embedded case, where the attacker has 
access to the physical implementation of the neural network. The second attacker model applies 
to the cloud setting, where the attacker needs to mount attacks indirectly by 
manipulating/observing computing resources that are physically close to the neural network 
implementation. 
 
Scenario 1: Attack on an embedded platform. Consider a sensor that is used to drive an 
authentication processor, such as a camera sensor for face recognition. The sensor captures 
potentially complex and noisy data that requires processing in a neural network. The final 
labeling (neural network output) authenticates the user and is susceptible to impersonation or 
manipulation. The working group considers side-channel analysis on the neural network 
processing as a starting point to reveal the authentication token. 
Reverse engineering of neural networks also becomes possible through side-channel analysis: 
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●​ Retrieval of the number of neurons and layers through simple power/EM analysis 
●​ Retrieval of trained weight value through correlation power analysis 

 
Scenario 2: Attack on a cloud platform. Consider a neural network that operates in a shared 
processing architecture, and an attacker that aims to manipulate (not just reveal) the token 
processed by the neural network. Because of the network’s complexity, redundancy techniques 
such as commonly applied against fault injection, are less suitable. Instead the defender aims to 
reveal the injected fault as soon and as reliable as possible. And conversely, the attacker aims 
to identify the location for the most effective fault injection. 
 
The attacker model is traditionally defined in terms of the level of access. 

●​ Physical access 
○​ Side channel measurements 
○​ Fault injection 
○​ Preventing firmware updates or hijacking GPU hardware during firmware update 

●​ Memory attacker 
○​ Neural networks have complex memory hierarchies, leading to multiple attacker 

models: intra- and inter-GPU, intra- and inter-VM. Confidential computing 
implements logical isolation in multi-processor context and is a target in each of 
these cases. 

●​ Input/output attacker 
○​ Manipulation of data, such as adversarial training, prompt injection, LLM 

inversion, are potential vulnerabilities with their own defenses. However, the I/O 
attacker is considered out of scope for the implementation attacker. 

●​ Disclosure of new attacks and attacker models is considered to be a challenge. 
 
 
References 

●​ S. Tajik and F. Ganji, “Artificial neural networks and fault injection attacks,” in Security 
and Artificial Intelligence: A Crossdisciplinary Approach, Cham, Switzerland: Springer 
International Publishing, 2022, pp. 72–84. [Online]. Available: 
https://arxiv.org/pdf/2008.07072. 

●​ M. C. Tol and B. Sunar, “Zeroleak: Using LLMs for scalable and cost-effective 
side-channel patching,” arXiv preprint, arXiv:2308.13062, 2023. [Online]. Available: 
https://arxiv.org/pdf/2505.00817 

●​ P. Horváth, D. Lauret, Z. Liu, and L. Batina, “SoK: Neural network extraction through 
physical side channels,” in Proc. USENIX Security Symp., 2024. [Online]. Available: 
https://www.usenix.org/conference/usenixsecurity24/presentation/horvath 

●​ P. Horváth, L. Chmielewski, L. Weissbart, L. Batina, Y. Yarom: BarraCUDA: GPUs do 
Leak DNN Weights. to appear at USENIX Security Symposium 2025. Available: 
https://arxiv.org/abs/2312.07783 

https://arxiv.org/pdf/2008.07072
https://arxiv.org/pdf/2505.00817
https://www.usenix.org/conference/usenixsecurity24/presentation/horvath
https://arxiv.org/abs/2312.07783


●​ A. Adiletta and B. Sunar, “Spill the beans: Exploiting CPU cache side-channels to leak 
tokens from large language models,” arXiv preprint, arXiv:2505.00817, 2025. [Online]. 
Available: https://doi.org/10.48550/arXiv.2505.00817. 

●​ K. Lee, A. Alshahrani, W. Wang, B. Malekian, and J. Szefer, “Secure machine learning 
hardware: Challenges and progress,” IEEE Circuits Syst. Mag., vol. 25, no. 1, pp. 8–34, 
2025. [Online]. Available: https://doi.org/10.1109/MCAS.2024.3509376 

●​ A. Adiletta, Z. Weissman, F. Khojasteh Dana, B. Sunar, and S. Tajik, “Rubber Mallet: A 
study of high frequency localized bit flips and their impact on security,” arXiv preprint, 
arXiv:2505.01518, 2025. [Online]. Available: https://doi.org/10.48550/arXiv.2505.01518 

●​ J. Breier, D. Jap, X. Hou, S. Bhasin, and Y. Liu, “SNIFF: Reverse engineering of neural 
networks with fault attacks,” IEEE Transactions on Reliability, vol. 71, no. 4, pp. 
1527–1539, Dec. 2022. doi: 10.1109/TR.2021.3102840 

●​ L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engineering of neural 
network architectures through electromagnetic side channel,” in Proc. 28th USENIX 
Security Symposium (USENIX Security 2019), Santa Clara, CA, USA, Aug. 2019, pp. 
515–532. [Online]. Available: 
https://www.usenix.org/conference/usenixsecurity19/presentation/batina 

V.​ Datasets 
The working group observes that there is no common methodology or practice to 
systematically share datasets in the context of AI for implementation security testing. This 
problem was also observed earlier during the OPTIMIST discussions on Standard File 
Formats for side-channel traces. ASCAD is a good starting point; ScapeGOAT offers an 
ability to store metadata and to organize trace sets hierarchically. For long-term storage, 
the working group concluded that zenodo.org, figshare.com, and huggingface.co are 
possible containers. Zenodo offers a DOI for the data; huggingface offers free storage as 
long as the data is publicly shared. The following table is a partial list of known public 
datasets with variable and fixed keys.  

 
Standard Datasets for Side-channel 

ID SW/HW​
(Seq/Par) 

Prot/​
Unprot 

Features 

ASCAD SW Both Alignment, 8bit, Fix/Var Key AES 

ASCADv2 SW Prot 32bit, Fix/Var Key AES 

AESRD SW Prot 8bit, Random Delay AES 

AESHD HW Unprot FPGA, AES 

CS3, CS5 HW Unprot FPGA, misaligned tr, PRESENT 

ECC SW Prot 32 bit, Curve25519 EdDSA 
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WolfSSL SW Prot 32 bit, Curve25519 EdDSA 

CHES CTF   Partially on aisylab 

GPAM ECC HW Prot ECC scalar multiplication, large 

DPA Contest V2 HW Both AES-128 on SASEBO GII 

https://cloud.telecom-paris.fr/s/N5qgyMdxEcqip
N2​
https://cloud.telecom-paris.fr/s/iScPMi78Jg8jere 

DPA Contest V4 SW Both AES-256 on ATMega-163​
https://cloud.telecom-paris.fr/s/PP79GTSj9mmg
4xL 

DPA Contest V4.2 SW Both AES-128 on ATMega-163 
https://cloud.telecom-paris.fr/s/JM2iaRZfwrNKtS
p 

AES_HD_MM HW  Missing- AES 128 on SASEBO GII 

Ed25519 SW Both EdDSA on STM32F4 

Curve25519 SW Both EdDSA on STM32F4 

Kyber SW Unprot https://eprint.iacr.org/2025/811 

Ascon SW/HW Unprot https://zenodo.org/records/10229484 

SMAesH HW Prot AES block cipher with masking as a 
countermeasure 

scaaml NXP 
K82F 

Both ECC on NXP K82F​
https://github.com/google/scaaml/tree/main/pap
ers/datasets/ECC/GPAM 

 
Need for other dataset: 
Side-channel dataset are broadly available for AES, ECC, EdDSA implementations, so the 
creation of side-channel dataset (SW/HW) for other ciphers, standardized Post Quantum 
Cryptographic algorithms (protected and unprotected) would be useful. 
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